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Entanglement area law in superfluid 4He
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Area laws were first discovered by Bekenstein and Hawking1,2,
who found that the entropy of a black hole grows proportional
to its surface area, and not its volume. Entropy area laws
have since become a fundamental part of modern physics,
from the holographic principle in quantumgravity3–5 to ground-
state wavefunctions of quantum matter, where entanglement
entropy is generically found to obey area law scaling6. As
no experiments are currently capable of directly probing
the entanglement area law in naturally occurring many-body
systems, evidence of its existence is based on studies of
simplified qualitative theories6–8. Using new exact microscopic
numerical simulations of superfluid 4He, we demonstrate for
the first time an area law scaling of entanglement entropy
in a real quantum liquid in three dimensions. We validate
the fundamental principle that the area law originates from
correlations local to the entangling boundary, and present an
entanglement equation of state showing how it depends on the
density of the superfluid.

Condensed 4He undergoes a transition from a normal liquid to a
superfluid phase at a critical temperatureTc ≃2.17K, at its saturated
vapour pressure9,10. Superfluid 4He was the first experimentally
realized, and remains the most extensively studied, quantum phase
of matter. Anomalous phenomena such as dissipationless flow, non-
classical rotational inertia, quantized vortices and the Josephson
effect have been thoroughly experimentally characterized11. Early
theoretical work demonstrated the quantum mechanical origin of
these phenomena12–14 where the Hamiltonian of liquid 4He is that
of interacting spinless, non-relativistic bosons. Continuous space
quantum Monte Carlo methods enable the precise computation of
a wide range of its microscopic and thermodynamic properties,
confirming theoretical predictions and reproducing experimental
observations15. Moving beyond conventional simulations, recent
algorithmic advances have opened up the possibility of measuring
entanglement, the non-classical information shared between parts
of a quantum state, in numerical experiments16,17. We combine
these two technologies to measure the entanglement entropy in
the superfluid phase of bulk 4He at zero temperature. Its ground
state, |Ψ 〉, in a cubic volume can be bipartitioned into a spherical
subregion A and its complement Ā as shown in Fig. 1. The standard
measure of entanglement between A and Ā is the Rényi entropy,
Sα(A)≡ log(Trρα

A
)/(1−α), where ρA is the reduced density matrix

of the subsystem: ρA ≡ TrĀ|Ψ 〉〈Ψ |. The α = 1 case is most
commonly known as the von Neumann entropy. The integer α ≥2
entropies have special physical significance, since they are related
to the expectation value of an operator18. This allows for their
evaluation using conventional measurement techniques, without
resorting to full-state tomography. Since, from amany-body physics
perspective, relevant features of entanglement (such as the area law)

are quantifiable for any Rényi entropy, the natural choice, measured
both in numerical simulations as well as recent experiments19, is
α = 2. Here, we investigate its dependence on the radius R of the
spherical subregion over a range of densities in the superfluid and
find a dominant area law scaling: S2 ∼R2.

While there is no proof of the area law outside of a restrictive
case in one spatial dimension20, it is the leading contribution to a
scaling form that can be argued to arise from a few fundamental
physical principles6,21–24. These are: S2(A) arises from correlations
local to the entangling surface; and it has contributions at all length
scales ℓ ranging from the microscopic scale of the interactions, r0,
up to the characteristic size of the system, rf =min[R, ξ], where
ξ is a correlation length. From these, a simple phenomenological
scaling theory can be inferred for a spherical boundary of radius
R in three dimensions (Fig. 1). For each infinitesimal region of the
bounding surface d6, there is a local contribution to S2 from each
length scale ℓ. For a given ℓ, the lowest order dimensionless quantity
that can contribute to S2 is d6/ℓ2; when integrated over the surface
this provides a contribution ∼R2/ℓ2. To account for contributions
at all length scales, defined in the renormalization group sense,
we integrate using a logarithmic measure23. This measure can be
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Figure 1 | Entanglement across a spherical boundary. A container of

superfluid 4He is bipartitioned into a spherical subregion A of radius R and

its complement Ā at fixed density n≡ 1/r3
0. The entanglement between A

and Ā is dominated by an area law, scaling with area of the

bounding surface.
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Figure 2 | Entanglement entropy of superfluid 4He. The ground state of

N superfluid helium-4 atoms in a cubic cell with linear dimension L and

periodic boundary conditions is bipartitioned into a sphere of radius R and

its complement at fixed equilibrium density n0 =N/L3 ≃0.02186 Å−3. The

Rényi entanglement entropy S2 in the limit R≪ r0 is driven by particle

fluctuations into the spherical subregion and is well described by free

bosons (dotted line). For r0 .R.L/2 we perform the simplest fit of the

numerical data to the leading-order behaviour of the scaling form in

equation (1), using a two-parameter fit (a, c) with b=0, shown as a solid

line. Deviations from the universal curve for each system size occur as

R approaches L/2, due to finite-size e�ects.

checked, for example, in the case of one dimension for a critical
system with entangled region of size L, where it reproduces the
appropriate scaling S2 ∼ log(L) (ref. 18). In three dimensions the
resulting integral is S2 ∼

∫ rf

r0
(R/ℓ)2d(logℓ)∼R2: an area law. While

higher order corrections lead to a power series inR, the symmetry of
the entanglement entropy between complementary regions of pure
states, S(A) = S(Ā), limits this expansion to even powers (in odd
dimensions). This leads to the generic scaling form,

S2 (R)=4πa

(

R

r0

)2

+b log

(

R

r0

)

+ c+O

(

r 20

R2

)

(1)

where a, b and c are dimensionless numbers. a is non-universal
and depends on the microscopic details of the system, while b
and c potentially encode universal information that is independent
of the short-distance physics. Note that the leading-order area (as
opposed to a volume) scaling and the absence of a subleading
linear term are both features of the underlying physical principles
in three dimensions.

We perform numerical tests of the general scaling form of
equation (1) via high-performance simulations of superfluid 4He.
Measuring S2 is significantly more computationally complex than
for conventional estimators such as the energy and required the
development of a new algorithm described in the Methods. The
combined results of S2(R) for R ≤ L/2 are shown in Fig. 2 for
the ground state of 4He at equilibrium density. We find that the
entanglement entropy for different numbers of particlesN collapses
to a nearly universal curve. Before finite-size effects dominate near
R∼ L/2, and for R& r0, we can fit the data to the scaling form
in equation (1) with the dominant behaviour captured by a two-
parameter fit (a, c) shown as a solid line. The extracted value of a
is robust within ∼ 5% for fits including b 6= 0 (details are provided
in the Supplementary Information).

The efficacy of this fit and its confirmation of the leading-order
scaling behaviour of the entanglement is investigated by computing
the residuals between the simulation data and two scaling forms as
shown in Fig. 3. We explore the area law predicted by equation (1),
and a volume law that would be expected for an extensive entropy of
thermodynamic origin. The residuals for the area law are consistent
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Figure 3 | Area or volume law? The residuals of the Rényi entanglement

entropy computed via quantum Monte Carlo (QMC) and two types of

two-parameter fit corresponding to an area law: Sfit
2 =4πa(R/r0)2 + c and a

volume law: Sfit
2 = (4πa/3)(R/r0)3 + c for N=64 4He atoms at the

equilibrium density n0. Residuals are shown for values of the spherical

subregion radius R over which the fits were performed. The data are poorly

described by the volume law and support the area law scaling predicted

in equation (1).

with zero, while strong deviations for the volume law exclude
this as a candidate for the leading-order scaling. We observe no
evidence of a subleading linear correction to the area law as
predicted by equation (1). The systematic investigation of further
subleading (non-constant) terms commensurate with equation (1)
would require simulations of larger system sizes, providing a wider
range of length scales.

To understand the physical origin of the area law scaling
coefficient a, we define an entanglement length scale ℓe ≡ r0/

√
a.

From a fit to equation (1), ℓe ≃ 1.3r0 ≈ 5Å at n = n0. This
strongly suggests that the short-distance physics of the potential
hard core and adjacent attractive minima dominate the area law
scaling behaviour.

To confirm, we study the effect of the density on the
entanglement by computing S2 for superfluid

4He over a range of
densities near n0 corresponding to positive (n> n0) and negative
(n< n0) pressures. Performing a two-parameter fit to the area law
scaling for each density, we plot an ‘entanglement equation of state’
in Fig. 4. a is an increasing function of density, and thus amonotonic
function of pressure (see inset). We find that ℓe depends both on
the nature of short-distance interaction as well as the interparticle
separation. We can contrast this behaviour to the non-interacting
Bose gas, where S2(R) is a pure function of the aspect ratio R/L.

In conclusion, we have demonstrated that the prototypical quan-
tum fluid, superfluid 4He, displays area law scaling of its entangle-
ment entropy. Using large-scale, exact microscopic simulations, we
have extracted the numerical coefficient of the area law term and
find that it is a monotonically increasing function of density. This
confirms that fluctuations and interactions local to the entangling
boundary drive the physics of the area law. These fluctuations also
play an important role in constraining the subleading scaling of the
entanglement entropy, which contains new universal physics. For
example, it is predicted that logarithmic corrections should arise due
to the existence of a spontaneously broken continuous symmetry in
the thermodynamic limit, contributing a universal coefficient due
to the presence of a low-energy ‘tower of states’ spectrum and a
Goldstone boson25–27. For superfluid 4He with a spherical entan-
gling surface, this b coefficient will combine with another universal
number arising from the vacuum theory governing the bosonic
fluctuations. This latter quantity encodes one of the two cen-
tral charges that characterize a three-dimensional conformal field
theory28, believed to be the fundamental constant that quantifies
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Figure 4 | Entanglement equation of state. The area law coe�cient a

versus density n in the ground state of 4He in the superfluid regime, as

computed by two-parameter fits to quantum Monte Carlo data for N=64

(symbols); the line is a guide for the eye. Inset: the pressure P of the ground

state of superfluid 4He as a function of density, from ref. 30. This suggests

that a is a monotonic function of pressure. The dashed vertical lines

correspond to the equilibrium density n0 ≃0.02186 Å−3.

how entropymonotonically decreases under renormalization group
flow29. A curved bounding surface such as a sphere without defects
is only possible in the spatial continuum. It is thus possible that
fundamental physical quantities that arise for smooth geometries
are inaccessible in simple lattice models and can be probed only in
Galilean-invariant quantum liquids.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
The Hamiltonian of bulk liquid 4He is that of spinless, non-relativistic bosons
interacting with a two-body interatomic potential:

H =−
~

2

2m

N
∑

i=1

∇2
i
+

∑

i<j

V
(∣

∣ri − rj
∣

∣

)

(2)

where ~2 is the reduced Planck’s constant andm is the mass. Accurate microscopic
interatomic potentials V for 4He have been developed31 that include a repulsive
hard core of radius σ ≃2.6 Å, an attractive power-law tail, and a minimum of
depth ǫ ≃11K at radius rm ≃3.0 Å. At the equilibrium number density
n0 ≃0.02186Å−3, the mean interparticle separation r0 ≃3.6 Å is slightly larger
than rm. The use of V in conjunction with path integral quantumMonte Carlo
methods has allowed for precise calculations of a wide range of ground state and
finite temperature properties of liquid helium15 for N of order 104 atoms32.

In recent work we have extended these Monte Carlo methods to compute
Rényi entropies in systems of itinerant particles in the spatial continuum16,17,33,34.
Due to the increased computational difficulty of computing Rényi entropies, the
data presented here are limited to N ≤64 4He atoms. However, systems of this size
have been demonstrated to be sufficiently large to display fundamental
macroscopic features of superfluid 4He (ref. 15).

While our previously published algorithm was focused on one spatial
dimension, for this work we have developed a new variant that allows for the
computation of Rényi entropies in the ground state of systems of interacting bosons
in three-dimensional continuous space.We use a path integral method15,35 that gives
access to group state properties via imaginary-time projection on a trial state |ΨT〉:

|Ψ 〉∝ lim
β→∞

e−βH |ΨT〉 (3)

We label the classical configuration space of N bosons by R, which is a vector of
three-dimensional particle coordinates. Considering Hamiltonians of the form
equation (2), we use a standard approximation to the imaginary-time propagator

ρτ

(

R,R′)≃〈R|e−τH |R′〉 (4)

which is accurate to fourth order in the short time τ (refs 36,37). Because
equation (4) is non-negative for bosonic systems, we can Monte Carlo sample
discrete imaginary-time world-line configurations, where we use P discrete time
steps with 2β =Pτ .

For the second Rényi entropy, we define a replicated Hilbert space of two
non-interacting copies of the system, {|R〉⊗|R̃〉}. We may compute S2 under a
bipartition of the system into A and its complement Ā from the expectation value
of a ‘swap operator’ that swaps the configuration of A between the two replicas:

SWAPA

(

|RA,RĀ〉⊗|R̃A, R̃Ā〉
)

=|R̃A,RĀ〉⊗|RA, R̃Ā〉

where R={RA,RĀ} such that RA (RĀ) is a vector of the coordinates of the particles
in A (Ā). The estimator for S2 is then simply related to the expectation value of the
swap operator16:

S2 (A)=− log

[

〈Ψ |⊗〈Ψ |SWAPA|Ψ 〉⊗|Ψ 〉
]

(5)

To compute equation (5) with path-integral ground-state Monte Carlo, we use
equation (3), and consider imaginary-time paths of length 2β , capped by ΨT on
either end of the path. We Monte Carlo sample an extended configuration space of
imaginary-time world lines that includes configurations where world lines that
pass through A at imaginary time β may swap between replicas. That is, world lines
that pass through the Ā spatial subregion at time β are always propagated in
imaginary time along the same replica, but particles that pass through the

A subsystem at time β may be connected via ρτ to a world line in R̃A or RA at time
β +τ . Such swapped world-line configurations have weight of the form

Ψ
∗
T (R0)Ψ

∗
T

(

R̃0

)

P/2−1
∏

j=0

ρτ

(

Rj,Rj+1

)

ρτ

(

R̃j, R̃j+1

)

×

ρ
Ā

τ

(

RP/2,RP/2+1

)

ρ
Ā

τ

(

R̃P/2, R̃P/2+1

)

×

ρ
A

τ

(

RP/2, R̃P/2+1

)

ρ
A

τ

(

R̃P/2,RP/2+1

)

×
P
∏

j=P/2+1

ρτ

(

Rj,Rj+1

)

ρτ

(

R̃j, R̃j+1

)

ΨT (RP )ΨT

(

R̃P

)

where ρA
τ
(ρ Ā

τ
) are the reduced propagators for the A (Ā) subsystem17,34 and Rj is the

configuration of N particles at imaginary time jτ . By including updates that allow
for the world-line connectivity to interchange between swapped (s) and unswapped
(u) configurations, we may measure S2 from equation (5) from the ratio of the
swapped and unswapped generalized partition functions:

S2 =− log
Zs

Zu

(6)

We find this estimator to be more efficient than previous variants for systems above
one spatial dimension. To further improve its performance we used a ‘ratio
method’ to build up A from smaller increments33,38. The systematic errors due to
finite τ and β can be made arbitrarily small by increasing P at a computational cost
that is polynomial in P and N with details shown in the Supplementary
Information. All results shown were computed using β =0.48K−1, τ =0.005K−1,
and a constant trial wavefunction.

Data availability. All quantumMonte Carlo data that were used to generate the
plots within this paper and other findings of this study are available from the
corresponding author on reasonable request.
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